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Advanced statistical energy analysis

By K. H. HErON
Defence Research Agency, Farnborough, Hampshire GUI14 6TD, U.K.

A high-frequency theory (advanced statistical energy analysis (AsEA)) is developed
which takes account of the mechanism of tunnelling and uses a ray theory approach
to track the power flowing around a plate or a beam network and then uses statistical
energy analysis (SEA) to take care of any residual power. Asga divides the energy of
each sub-system into energy that is freely available for transfer to other sub-systems
and energy that is fixed within the sub-system. The theory allows for coupling
between sub-systems that are physically separate and can be interpreted as a series
of mathematical models, the first of which is identical to standard sea and
subsequent higher order models are convergent on an accurate prediction. Using a
structural assembly of six rods as an example, ASEA is shown to converge onto the
exact results, whereas sEaA is shown to overpredict by up to 60 dB.
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Statistical energy analysis (SEA) has been successfully applied to many noise and
vibration problems. In particular SEA has become very useful as a framework for
interpreting a vibro-acoustic data base. SEa often leads to a better understanding of
the problem and sEA can point the way to practical solutions. However, when used
as a purely predictive theory, without the recourse to measured data, SEA has not
been universally successful. Nevertheless in some cases it has been very successful,
for example when used to model the interaction between the noise in a room and its
vibrating walls, but when applied to complex structural assemblies sEa predictions
have often exhibited errors. These errors have been thought due to the fact that
plates and beams are usually strongly coupled and one of the assumptions within
standard sEA theory (see, for example, Lyon 1984) is that all couplings are weak.
However, Keane & Price (1987) conclude that this assumption should be replaced by
the necessity that no individual mode within a given sub-system should dominate the
overall response of that sub-system, and this requirement can be met either by
assuming weak coupling or by assuming the presence of many interacting modes.
Furthermore, if sEa theory is developed using the wave approach rather than the
modal approach this weak coupling assumption does not appear to be required (see,
for example, Heron 1990).

In this paper we postulate that the errors that sometimes occur when predictive
SEA is applied to complex structural assemblies are mainly due to an as yet
unmodelled power transport mechanism. This ‘tunnelling’ mechanism conceptually
occurs when direct coupling exists between two SEA sub-systems that are physically
separated from each other by other sEa sub-systems. This mechanism of indirect
coupling must not be confused with the power transport mechanism by which plate
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502 K. H. Heron

in-plane motion can couple physically separate bending motions; this latter
phenomenon is fully modelled by existing sEa theory provided the in-plane sub-
systems are included in the model.

A very simple form of tunnelling is associated with the non-resonant acoustic
transmission through a plate and is already included in existing sga theory (see, for
example, Price & Crocker 1970; Leppington et al. 1987). However, this special case
is mainly a function of the change in the dimension between the plate and the
adjacent rooms and is not the concern of this paper.

Standard predictive SEA assumes zero coupling between the end plates of, for
example, an in-plane assembly of three in-line plates. In this paper we develop a
theory that allows for all sub-systems to be coupled to each other. Unlike for the
simpler case of non-resonant acoustic transmission through a plate, we would
intuitively expect this new theory to produce coupling loss factors that are not only
a function of the power transmission coefficients across the various intervening line
junctions, but are also dependent on the geometry and damping of the intervening
plates.

In the following sections this theory is developed both for beam and plate
networks and for want of a better name we will subsequently refer to this theory as
advanced sEA or simply AsEA. Fundamentally it uses a ray theory approach to track
the power flowing around the network and then uses standard sEa to take care of any
residual power.

2. Free and fixed energy

Now all deterministic theories (modal, analytic, FEM, ete.) use field variables such
as displacement and pressure and they must therefore include phase in the model,
and the very essence of a high frequency model is the simplification associated with
ignoring these phase effects. It is not just the need for computational efficiency that
drives us to this assumption, but as Hodges & Woodhouse (1986) point out as we
move to higher frequencies any deterministic approach becomes increasingly
sensitive to the details of the physical structure under investigation, to such an
extent that the results will be influenced by the deviations from the ideal design that
inevitably occur in construction and such deviations are unknown. Thus all such
deterministic approaches are rejected in this paper without further consideration;
power accounting and the use of the sub-system energies as the field variables are the
mainstays of sEa, and AsEA will be developed using the same philosophy.

The tunnelling phenomenon that we are attempting to model is associated with the
transport of power, from sub-system 1 to sub-system 3 via an intervening sub-system
2 without at the same time inducing any increase in the ‘free energy’ of the
intervening sub-system, and we must now consider what we mean by free energy.

With free energy we mean that part of the total sub-system energy that is
available for transport to other sub-systems. In standard sea all sub-system energy
is free energy. Conversely the fixed energy of a sub-system is that part of the total
sub-system energy that is not available for transport to other sub-systems. This
postulates that the total energy of a SEA sub-system can be partitioned into a free
and a fixed part is fundamental to AsEa theory.

Returning to the three in-line plate assembly example, we can now consider the
following power flow mechanism. Free power associated with the free energy of sub-
system 1 strikes the line junction between plate 1 and plate 2, this causes some power
to transmit into plate 2 and as this power transports across plate 2 it will decrease
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in magnitude due to the damping mechanisms of plate 2. It is this loss of power that
is self evidently not available for further transport duties and must be accounted for
by a fixed energy field within plate 2. Finally some part of this transported power will
strike the line junction between plates 2 and 3 where it will cause power injection into
plate 3, and at this level of complexity such power will feed into the free energy field
of plate 3.

3. SEA basics

First we find it helpful to rewrite the standard sEa matrix equation in a more
convenient form for subsequent extension to Asga such that

Ae = P—Me, (3.1)

where e is a column vector of sEA modal energies, P is a column vector of input
powers, M is a diagonal matrix of modal overlap factors, and 4 is a matrix of coupling
loss factors. That is

M = on;n;, (3.2)

where w is the frequency, », is the modal density of sub-system ¢ and 7, is the energy
loss factor for sub-system ¢; furthermore for a three sub-system model we have

My g+ N3 — Ny M2 — N33
4=w N M12 Mg Mgy + Mg Nag — N3 N3e ) (3.3)
— N1 M3 Ny Ya3 Mg Mgy + Mg Yo

where 7,; is the usual sEA coupling loss factor.

Of course the more usual SEA matrix equation can be recovered by combining the
A and the M matrices in (3.1). The reason for the above formulation will become
apparent as we develop ASEA theory, but for now it is worth noting that each of the
three terms in (3.1) have a clear physical meaning; the left-hand side term
incorporates all the power transport and coupling effects and the two right-hand side
terms model all the power sources and all the power sinks respectively.

Furthermore, if all the equations in (3.1) are added together we have, by power
balance, that the sum of all the right-hand side terms is zero, and this is true for all
possible P and thus for all possible e. Hence each individual column of 4 must always
sum to zero, which is of course a trivial deduction from sEA. Indeed, assuming sEa
reciprocity, 4 is a symmetric matrix and thus each individual row of 4 must also sum
to zero. However, it is important to note that this row sum rule is a consequence of
power balance and sEA reciprocity whereas the column sum rule is solely a
consequence of the much more fundamental requirement of power balance.

4. ASEA basics

In developing AsEaA theory we will, as described above, split the total energy field
within each sub-system into two parts, a free energy field with a modal energy of e,
and a fixed energy field with an ‘equivalent’ modal energy of d. The term ‘modal
energy’ is used because of its historic link with classical sga theory, however the
reader might find it easier to think of the modal energy as a measure of the energy
density of a sub-system with which it is closely related for sub-systems made up of
simple beams, plates or rooms.

Phil. Trans. R. Soc. Lond. A (1994)
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504 K. H. Heron

Using the column vectors e and d as the field variables, ASEA can be encapsulated
by the following two matrix equations

Ae = P - Me, (4.1)
free power to free free power free power
power transfer input
Be = Q - Md, (4.2)
free power to fixed fixed power fixed power
power transfer input lost

and to understand better these equations we have attached a physical description to
each of the terms. The above equations form the basis for ASEA theory and this paper
is mainly concerned with the calculation procedure for the 4 and the 5 matrices.

It may be thought that the somewhat arbitrary use of M in the second equation
involves an agsumption but this is not so since we have yet to specify the precise
definition of B and Q, and the requirement to conform with equation (4.2) creates
those definitions.

Once 4, B, P and Q are known the responses can be calculated from e+d, using
exactly the same procedures that we currently use when calculating SEA responses
from e. It should be noted that the 4 matrix of AsEa theory is not the same as the
A matrix of standard sea theory.

From equations (4.1) and (4.2), e+d is given by

e+d=M*Q+R), (4.3)
where R=M-B)(M+A4)*P. (4.4)
Now for the classical excitation of ‘rain on the roof’ Q is zero, and with this
simplification equation (4.3) can be rewritten as
M+A4)M—-B)*Me+d) = P, (4.5)
and this equation can be considered to be the ‘equivalent’ standard sEa matrix
equation such that if

Asea €sea = P, (4.6)
then Ay = M+A4) (M—B)M, (4.7)
and e, =e+d. (4.8)

Finally by applying the same power balancing argument of §3 we can easily deduce
the important property that each individual column of 4 + B must always sum to
zero.

5. ASEA and beam networks

In a beam network each beam will consist of four sub-systems associated with its
two bending wavetypes, its compressional wavetype and its torsional wavetype. In
this section, for clarity of presentation, we will only consider a network of rods with
each rod having only one wavetype. Provided we allow for this one wavetype to be
conceptually of any type, for example by not assuming that the group velocity is
equal to the phase velocity, then the extension to a beam network is straightforward.

Consider now the free energy field of rod j, represented by its modal energy e;. Then
the total free energy of this rod, £, is given by

B, =mn;e;, (5.1)
and the energy density of this free energy is £; divided by L;, where L; is the length
of rod j. Now by assuming that this energy field is made up of equal amounts of
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incoherent power, P, flowing both from left to right and from right to left along the
rod (equivalent to the random incidence assumption in two- and three-dimensional
sub-systems) we have

E,/L; = 2P/c,;, (5.2)

where c,; is the group velocity of rod j.
Furthermore since for all one-dimensional sub-systems

n; = Ly/mey, (5.3)

we can combine equation (5.1) and equation (5.2) to obtain the standard sea result
that
P =e¢;/2m. (5.4)

Thus for unit modal energy the power available at each end of rod j, F,; say, for
potential transportation to the other rods, is simply 3m.

We can now proceed with the calculation of the elements of the matrices 4 and B.
Initially all these are set to zero and the calculation is based on using the elements
of these matrices as accumulators. We start by taking a particular end of a particular
rod and ultimately repeat the calculation for both ends of every rod.

The power available per unit modal energy P,; at this particular end of rod j will
conceptually be all transferred from rod j, and thus F,; must now be added to element
(4,7) of matrix 4; add rather than subtract because the transfer terms have been
conventionally placed on the left-hand side of equation (4.1) and equation (4.2).

Now we take this available power, P,; say, and multiply it by the appropriate
transmission or reflection coefficient. This is then the power at the connected end of
a particular receiving rod, rod ¢ say, and this power is now ready for transportation
across this rod; rod ¢ can be the same rod as rod j to take care of the reflected wave
and indeed the following calculations must be performed for all rods connected to the
chosen end of rod j including rod j itself. This start power, P, say, is thus given by

Py=1yP, (5.5)

?)

where 7, is the power transmission coefficient for power flowing from rod j to rod 7.
It is worth keeping in mind at this point the standard sga theory which would

proceed in the following manner
wn; Ny = Py = 1, P, = 7;5/2m, (5.6)

and thus Ny = T/ 2m0m;. (6.7)

ij

Returning to Asra theory, power will flow across rod ¢ and will decay as it does so
with the exponential factor

exp (=1, Ly/cy;) = exp (—nly), (5.8)
where M, is the modal overlap factor of rod ¢. Thus
Py = exp (—nM,) F;, (5.9)

where P,; is the power striking the far end of rod ¢. The power lost during this
crossing, P, say, is given by

P,=P,—P,. (5.10)
This lost power must now be subtracted from element (7,j) of matrix B; matrix B
rather than matrix 4 since this power is self evidently unavailable for further

Phil. Trans. R. Soc. Lond. A (1994)
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506 K. H. Heron

transport duties. On the other hand, P,; is available for further transport duties, and
indeed we can continue the calculation from equation (5.5) using P,; rather than F,;.
Of course within this cycle of the calculation we can only modify column j of either
matrix 4 or matrix B since all of the initial available power comes from rod j. This
whole process can be stopped at any stage and having stopped any remaining power,
P, say, must then be subtracted from element (¢,7) of matrix 4. This latter is
essential to maintain power balance and conceptually uses a standard sea approach
to sweep up and account for the residual power F,;; it also ensures that all the

columns of 4 +B sum to zero as required by power balance.

6. ASEA and plate networks

The above theory can be extended to plate networks although its actual
implementation could well turn out to be computationally expensive, as compared
with standard sea. However, AsEa plate theory will hopefully guarantee an accurate
prediction and the fact that it may not become a practical tool because of the
computational load should not deter us from its development. Its use as a tool for the
validation of more approximate theories is very important because no accurate high
frequency theory exists for general structural assemblies.

Whereas with rods we calculated the 4 and the B matrices by starting with a
particular end of a particular rod and with beams we would start with a particular
end of a particular beam and with a particular wavetype, with plates we must start
with a particular edge of a particular plate and not only with a particular wavetype
but also with a particular incidence angle at the chosen edge. In standard sea the
eventual integral over all angles of incidence is carried out implicitly within the
model such that the formula for an sEa plate to plate coupling loss factor is a function
of the random incidence transmission coefficient as given below in equation (6.6). In
ASEA we can only perform the integral over all possible angles of incidence, 180°, at
the end of the A and B calculation; although by converting this integral into a
suitably weighted sum we can easily incorporate it into the calculation procedure.
Unfortunately line junction transmission coefficients tend to vary a lot with angle of
incidence due mainly to the complex interaction effects of the various wavetypes and
it is often necessary to perform these calculations over many angles of incidence:
typically at every integer degree.

For a random diffuse energy field in sub-system j of a plate the intensity, /; say,
is given by

I; = e;k;/4m, (6.1)
where k; and ¢; are the wavenumber and modal energy respectively of the wavetype
associated with sub-system j. The power per unit modal energy striking an edge of
length L at a grazing angle of incidence ¢; is thus

P,; = Lk;sin (¢,)/4m, (6.2)

and as before this must now be added to element (j,7) of matrix 4.
We set
By = 1(¢;) Py (6.3)

however, 7;; is now a function of ¢; and the transmitted wave angle has to be
calculated using trace wavenumber matching such that

k;cos (¢;) = k; cos (¢;). (6.4)
Phil. Trans. R. Soc. Lond. A (1994)
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Again at this point it is worth keeping in mind the standard sga theory which for
plates proceeds as follows

A J P dg,. (6.5)
0

and thus Ny = Lik; 7,5/ 2m%0m,;, (6.6)

where the random incidence transmission coefficient is given by

K3
Ty = J’ 7i(¢;) sin () dep;. (6.7)
0

Returning to AsEA theory, geometric calculations must now be made to track the
wave as it is transported across sub-system ¢. This can result in more than one edge
of the plate supporting sub-system ¢ being illuminated and furthermore an
illuminated edge need not be illuminated along its entire length; both of these effects
must be calculated.

The damping factor, equivalent to the factor e of equation (5.8), is also more
complicated here. Different parts of the wave will travel different distances, however
for polygon shaped plates a damping factor averaged over all possible path lengths
between two edges can be used and this is given by

—nM

(e—bk_e—ak‘)
~ =D .
(ax—bk) ’ (6.8)
where k= wn;/cy = 2nM /A k;, (6.9)

and where a and b are the maximum and minimum path lengths.

Finally
Fei = DE (6.10)

and Py=P,—Py, (6.11)

and P, is subtracted from element (¢,5) of matrix B as before.

7. Comparison with analytical results

ASEA produces a different result dependent on the number of transfers of power
across a sub-system that we are modelling. This number which is also one less than
the number of junctions crossed we will call the asea level number, and with a level
number of zero ASEA always produces results identical to standard sra since both B
and d are then zero. Advanced SEA can thus be thought of as a series of

approximations,
ASEA, (= SEA), ASEA,, ASEA,, ASEA,, ..., (7.1)

with the expectation that this series converges on the required result.

Tt is important to understand why we have this clear expectation that if the series
(7.1) converges at all it must converge onto the ‘correct’ result; correct in the sense
of giving the best high frequency result possible.

Consider the calculation procedure for aAsea with a very large level number; the
level number chosen to be so large as to cause the 4 matrix to be effectively zero.
Then the astA calculation procedure is nothing more than ray tracing with all phase
related effects ignored, or in other words simple power flow analysis. But unless we
want to encroach on the low frequency deterministic domain, any high frequency

Phil. Trans. R. Soc. Lond. A (1994)
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theory must at least make the assumption, explicitly or implicitly, that all phase
effects be ignored. Now with this assumption, and this assumption alone, we can
deduce asEA for an infinite level number. (Self evidently this would also be true for
a simple power flow analysis, the subtle difference is that Asea hopefully converges
much faster due to the different treatment of the ‘remainder’ terms, which are
ignored in a simple power flow analysis but are injected into a sEa procedure whose
results are added to the truncated power flow analysis during an AsEa calculation.)
Thus we fully expect that, if ASEA converges at all, and if an accurate high frequency
theory exists at all, AsEa will converge onto the best theoretical result possible.

To show this convergence for a particular case we have chosen a very simple
assembly consisting of six different rods all in a line. In principle an assembly of plates
could equally well have been chosen; however, exact results are extremely difficult
to compute for plate assemblies at high frequencies and thus we have chosen an
assembly of rods. The inline configuration has been deliberately chosen to highlight
the errors in a simple sgA calculation and the subsequent correction of these errors
by aseA. The inability of sga to predict such a contrived configuration is
understandable and does not detract from the usefulness of sea when applied to more
realistic structures, but it should be considered as a warning that the accuracy of sEa
is structure dependent.

The coupling between the rods is such that conceptually the whole structure could
be made from a single piece of material with the far ends of the chain left
unsupported or free. The rod material is such that its longitudinal phase, or group,
velocity is 5000 m s7*. The six rods are of lengths 23, 28, 25, 24, 29 and 21 m and their
cross-sectional areas are such that their mass per unit lengths are 1, 10, 3, 7, 8 and
2 kg m™ respectively. An energy damping value of 2% was chosen for the sra
modelling, and viscous damping with an equivalent critical damping ratio of 0.01
chosen for the exact model. The structure was always driven with a unit force on the
first rod.

The exact results were calculated by Keane (1992; personal communication) and
form a full deterministic analysis for point excitation, they are based on calculating
the power flow across the assumed point connections between the rods for a given
unit point force excitation on the drive rod. These response data were then
numerically averaged over all excitation positions on the drive rod, rod 1, and over
all frequencies within the chosen frequency bandwidth of 50 Hz.

Figure 1a-d shows the results for the averaged response on the four rods furthest
from the drive rod:; the results for rods 1 and 2 are not shown because SEA and all
levels of AsEa lie very close to the exact results for these rods. All the displayed
responses have been normalized to unit mean square response velocity at the drive
point on rod 1.

As can be seen sEA, or equivalently ASEA, is not an adequate model at the higher
frequencies; at 10 kHz sea over predicts the response of rod 6 by over 60 dB. On the
other hand, as expected, AsEa always predicts accurately provided we are willing to
calculate to a high enough level number. For a chain of rods driven at one end the
rule of convergence appears to be that the asga level number should be at least the
rod number minus two. This is not so surprising a result since such a level number
ensures a direct coupling exist in the AsEa model between the drive rod and the
response rod. The convergence of ASEA is not necessarily monotonic with level
number as can be seen in figure 1d, where AsEA, gives a slightly better result than
ASEA,.

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 1. Response of rod 3(a), 4(b), 5(c) and 6(d). ——, Exact result; ————, ASEA, prediction;
—+—, ASEA, prediction; —---—, ASEA, prediction; ..... , ASEA, prediction; ——, AsEa, prediction.

8. Conclusions

A high frequency theory (asEa) has been presented that takes account of the
mechanism of tunnelling. This mechanism which requires the introduction of
coupling between skA sub-systems that are physically separate is modelled by
creating a new set of basic AsEA equations and dividing the energy of a sub-system
into energy that is freely available for transfer to other sub-systems and energy that
is fixed within the sub-system.

These equations are presented and an attempt has been made to give their
component parts physical meaning. The calculation procedure is presented for
modelling either a general beam network or a general plate network. AsEa is
interpreted as a series of mathematical models, the first of which is identical to
standard sEa and subsequent higher order models are convergent on the desired
result.

Using a structural assembly of six rods as an example, ASEA converges onto the
exact results whereas sEA is shown to overpredict by up to 60 kB.

I thank the U.K. Ministry of Defence for the financial support given to this work programme.
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